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Abstract

Research conduc ted under the auspices of AFOSR Grant 74—2631 on

“Resolu tion Space , Ne tworks , and Non—Self --Ad joint Spectral Theory ”

dur ing the per iod Apr il 1, 1977 t h r o u g h  M a r c h  31 , 1978 is surv eyed.

Specific attention is given to the solution of a Wiener— Hopf—li ke

“Basic Stochastic Optimization Problem ” , the solution of the feedback

sys tem stability problem for nonlinear and time—varying systems , and

the formulat ion of a theory of systems defined in a Banach resolution

space.

I. introduc tion

The theory of operators defined on a resolution space was

initiated a decade ago as a mathematical setting in which to formu-

late a unified theory of linear networks and systems .11’13 W i t h

the aid of recent progress in stability theory~~ and Wiener-flopf

optimization4’21’22 ’23 , that goal is now in sight . Indeed , it

has been surpassed in several areas wherein surprising inroads

have been made into the nonlinear theory .5’~~~’
15

Our research during the past year may naturally be subdivided

into three areas dealing with Wiener-Hopf optimization theory ,

stability theory , and the developement of the foundations for a

theory of operators on a Banach resolution space . The Wiener-

Hopf work began with the formulation of a Wiener filter for oper-

ators on resolution space21’22 ’
23 which has since been extended

into a “basic stochastic optimization problem ” which subsumes most

- (all?) of the quadradic optimization problems studied in linear
• system theory .

4 These include the Wiener and )(alman filters , the

sevomechanism and optimal regulator problems , the principle of

optimality, and th. separation principle . The resultant theory
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is applicable to time—variant , distributed , and finite time

linear systems as well as the classical linear lumped time-in-

variant systems. It is limited only by the requirement that cer-

tain covariance operators have a finite trace and questions

surrounding the existence of the “causal part” of an operator .22

Our work in the stability area has been centered on the form-

ulation of necessary conditions for the stability of a general

nonlinear feedback system.14 This has been achieved , in part ,

t)rough the formulation of homology theory for the set of causal

invertible operators on a resolution space. Here , our previously

developed theorem to the effect that the causal invertibility

property is a homotopic invariant16 is employed to map the set of

all causal invertible operators on a resolution space onto an

appropriate abelian semigroup in such a manner that the oeprators

which admit a causal inverse (and hence define a stable feedback

system) are mapped onto the units of the semigroup. By exp].icitaliy

constructing his homology for various classes of operator we have

successfully replicated most of the classical necessary and suffic-

ient conditions for feedback system stability .14 Moreover , the

• technique employed appears to be applicable to large classes of

time-variant and nonlinear systems ; a possibility which is presently

being explored.

Our third major area of activity during the past year has been

directed toward the extension of the resolution space concept from

Hu bert to Banach space . The most spectacular result in this en-

deavox’ has been the formulation of a miniphase operator factor-

ization theory for operators def ine d on a Banach space in whi ch the

factor space is a Hu bert space.23’24 Thi s, in turn , implies that

th e repr oducin g kernel resolution spa ce for a (ref lexi ve) Banach

• space valued random variable is a Hu bert space and that the
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scattering variables for a network defined in Bausch space take their

values in a Hu bert space.23’24 In other areas a class of Orlicz
resolution spaces have been defined which hairea “quasi-pythagorian

property that allows much of the Hu bert resolution space theory

to be extended to an Orlicz resolution space.

II. Wiener-Hopf Theory

Our “basic stochastic optimization problem” is characterized

by the block diagram of figure ~~ Here , i and B are given stochas-

tic processes ,

B _ _ _ _ _ _

ag 

~ _ _  
~~~~ 3 ~

H ~~~~
L

2 I

Figure 1. Block diagram for the “basic stochastic
optimization problem” .

• the are (no t  necessarily causal) operators on a resolution space ,

- and we ar e required to f in d a causa l opera tor , D0, which minimizes

~ J . 
1. 3(D) E ( 1 1 R 1 1 2 ~ I Ie I l~~
over the set of all causal operators. A solution to this problem

is given by
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where N and N are lef t an d right miniph ase fa ctor iza tions of

3. L~ L~ + L L ~ = M*M

and

4. L1Q L ~ + Q
B + + 

~~~ 
= NN~

respectively , and [ denotes the “causal part” operator s This

solution is well defined whenever the “causal part” exists and

a , B, and the L1 are restricted in such a way as to guarantee the

finiteness of 3(D ).4

Interestingly , this single “basic stochastic optimization

problem” includes most of the quadx’adic optimization problems

f classically studied in system theory . For instance , the restricted

. • 21,22,23Wiener filter derived by Tung corresponds to the special

case where a and B are independent , = L2 = 1, and L4 0.

A less restricted form of the Wiener filter is obtained by letting

L3 = 1 and L4 0 with a,8, L1 and L2 arbitrary . In particular ,

if = 1 and L2 = P (and ideal predictor ) this reduces to the

classical Wiener predictor.4 Similarly ,  by letting the Lu represent

the constituant operators which make up a state model a Kalman

filter may be obtained. In this case , the recent theorem of

Stienber’ger20 is used to transform equation 2. into the feedback

structure classically associated with the Kalman filter.

To convert the “basic stochastic optimization problem ” into

a classical open loop con tr ol problem , one takes to be non-zero

with our choice of a, B, and the L . defining the various classical

input—output and state space control problems . The resultant

open loop controllers may then be used to de term in e equiva lent



—.~~~._ ___~---_,~,, -.—- -.- .•w ~—•-

~~~~~ — -.-4 -L ~~~ - . — 

- 

~ -- -

feedback controllers via the classical transformation of variables.

Of course , one must further  ver i fy  the stability of the resultant

feedback controllers . For the case of a state space feedback con-

troller or’ an input-output controller with causal open loop gain ,

this presents no difficulty . For the general case , howev er , the

stability of the resultant feedback control system remains an

- open question .4

The app licability of the solution to the “basic stochastic

optimization problem ” given by equation 2. is limited only by the

existence of the “causal part” and the requirement that J(D )  be

finite. The former problem was studied several years ago and ,

unfortunately , proved to be highly ill-posed.5’6’13’17 The basic

difficulty lies with the fact that the “causal part” operator ,

viewed as a Banach space mapping from the bounded operators to the

causal operators , is not closed)8 Indeed , both the sets of oper-

ators which admit a well defined causal part and those which do not

admit a causal part , can be shown to be dense in the bounded oper-

ators.6’8 Of course , many sufficient conditions for the existence

of a “causal part” are known. 6,7,8 On the other hand , we believe that the~
f initeness ques tions surroundin g J(D

0) can be resolved. Indeed ,

a careful inspection of the derivation of equation 2.~ will reveal

that the given solution is “formally valid” without the finiteness

restriction.

III. Stability Theory

Our’ main activity during the past year in the stability area

has been the development of a homology theory for the class of

caus&l invertible operators.
14 Basically , this homology is th e



• 
‘
~~~~~~~~~~~~~~~ - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ZT’ 

-- - - •  

~~~~~~~~~~~~~~~~~~~~~~ 
—-~~•1~ -~~ ------—-• --- - —

P
abe lian1 semigroup formed by the connected components in the set

of causal invertible operators . By invoking our previously derived

theorem to the effect that the property of a causal operator having

• a causal inverse is a homotopic invariant16 it then follows that a

causal operator has a causal inverse if and only if the connected

component in which it lies is a unit in the semigroup . Indeed ,

this result is a virtual tautology . Interestingly , however’, we have

discovered that for may classes of operator this homology may be

computed explicitally yielding an immediate necessary and sufficient

conditon for a causal operator to admit a causal inverse. By

working with the return difference operator for a feedback system ,

• this , in turn, has permited us to replicate all of the classical

• necessary and sufficient conditions for feedback system stability.

This includes the classical and multivariable Nyquist criteria,

• the multd—imensional Nyquist criterion , and finite dimensional con-

dition , and the stability conditon for systems defined on

Although homology is usually considered to be an extremely ab-

stract concept , it is ideally suited for our application wherein it

transf orms a prob lem def ine d in an in f in i t e  dimensional space of

1Ri gorou sly,  one must “abelianize” this semigroup by factoring out
its comutator . In practice , how ever’, the comutatox’ has been
trivial in every example thus far constructed.

I. 
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(possibly ) nonlinear operators into an equivalent problem in an

abelian semigroup . Indeed , this semigx’oup has proven to be

finitely generated in every example thus far constructed. As such ,

we believe that the above described homological approach is

potentially capable of yi eldin g nece ssary an d su f f i c i ent conditio ns

for the stability of large classes of time-variant and nonlinear

feedback systems.

Linear time-invariant systems , either in the multivariable or

single-input single-output case are characterized by the semigroup

of positive integers yielding the classical result to the effect

that a causal operator admits a causal inverse if and only if it is

homotopic to the identity . (i.e. it lies in the same connected corn-

ponent as the identity.) Since our homology is dependent only on

the bomotopic equivalence class of an operator this result can be

extended immediately to the class of nonlinear and time-variant oper-

ators which are homotopic to a linear time-invariant operator.14

The open questions are: “how big

is this class of nonlinear and time-variant operators?” and “how

does one compute the equivalence class of such an operator?” . Al-

though not universal , we believe that the above described necessary

and sufficient conditon for’ the causal invertibility (i.e. stability)

of those nonlinear and time-variant operator’s which are homotopic

to a linear time-variant operator subsumes the existing literature

on causal invertibility . Indeed , to our’ knowledge , every existing

sufficient condition for stability (instability ) is essentially a

proof that the given return difference operator is (is not ) homotopic

to the identity .
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IV. Banach Resolution Space

Our efforts to extend the resolution space concept to Banach

spaces have been directed along two lines of inquiry . First , we

have developed a causal operator factorization theory for positive

self-adjoin-t operators which map a reflexive Banach space to its

dual.23’2~ A little analysis with the classical theory will. re-

veal that this i3 precisely the class of operator’s with which one

j must deal when working with systems defined in Banach space. For

instance, the covariance of a random variable taking values in a

reflexive Banach space , B, is such an operator’ as is the herinitian

part of a passive-impedance .23’24 The key to this factorization

theory is the fact that the given mapping is factored through a

Hu bert space rather than a Banach space. When applied to the co-

variance of a Banach spice valued random process , this implies that

its reproducing kernel space is Hu bert space rather than a Banach

space , whereas the application of this factorization theory to the

hermitian part of a passive impedance defined in Banach space yields

scattering variables defined in Hilbert space.23 ’24

Although the factorization theory described above is valid in

an arbitrary Banach resolution space1 the extension of classical

results related to strict causality and the additive operator de-

composition requires additional structure . This is achieved by a

subclass of the Banach resoltuion spaces termed Orlicz resolution

spaces which have a “pyth agorian” property which allows the

convergence arguments typically used in Hilbex’t resolution space

1For the purpose of this theory the self-adjointness condition
associ ated wi th the reso lution of the iden tity us ed in Hil bert
resolution space theory is subsume d by the simple requirem en t
tha t  the resolution of the identity be made up of contractive
idempotenta. •

- --
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to be extended to an Orlicz resolution space. As such , virtually P
• 

- 
the entirety of Hilber’t resolution space theory may be extended

to an Orlicz resolution space. We , however , believe that this is

the largest class of Banach resolution spaces to which the classical

theory can be fully extended.
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